Roadmaps for risk mitigation
  • Risk mitigation roadmaps
  • Mitigation Roadmaps
    • Improving generalization through model validation
      • Step 1: Estimating generalization
      • Step 2: Model validation for hyperparameters tuning
      • Step 3: Performing algorithmic selection
      • Additional Material
    • Hyperparameter Optimisation
      • Step 1: Validation
      • Step 2: Hyperparameter Search
      • Additional Considerations
    • Handling dataset shift
      • Step 1: Understanding dataset shifts
      • Step 2: Detecting dataset shifts
      • Step 3: Handling dataset shifts
      • Additional Material
    • Adversarial training for robustness
      • Step 1: Understanding adversarial examples
      • Step 2: Finding adversarial examples
      • Step 3: Defending against adversarial examples
      • Additional Material
    • Data Minimization techniques
      • Step 1: Understanding the data minimization principle
      • Step 2: Data minimization techniques for Supervised Learning
        • Option 1: Reducing features
        • Option 2: Reducing data points
      • Step 3: Other privacy-preserving techniques
      • Additional Material
    • Measuring Bias and Discrimination
      • Step 1: Understanding bias
      • Step 2A: Measuring Bias for Classification tasks
        • Equality of Outcome metrics
        • Equality of Opportunity metrics
      • Step 2B: Measuring Bias in Regression tasks
        • Equality of Outcome metrics
        • Equality of Opportunity metrics
      • Additional Material
    • Mitigating Bias and Discrimination
      • Step 1: Understanding bias
      • Step 2: Mitigating Bias
        • Option 1: Pre-processing
        • Option 2: In-processing
        • Option 3: Post-Processing
      • Additional Material
    • Documentation for improved explainability of Machine Learning models
      • Step 1: Datasheets for Datasets
      • Step 2: Model Cards for Model Reporting
      • Additional Material
    • Extracting Explanations from Machine Learning Models
      • Step 1: Understanding algorithmic explainability
      • Step 2: In-processing methodologies for Explainability
      • Step 3: Post-processing methodologies for Explainability
      • Additional Material
Powered by GitBook
On this page
  • Reading
  • Tools
  1. Mitigation Roadmaps
  2. Extracting Explanations from Machine Learning Models

Additional Material

PreviousStep 3: Post-processing methodologies for Explainability

Last updated 3 years ago

Reading

Tools

Auditing paper
Model-Agnostic Interpretability of Machine Learning
https://christophm.github.io/interpretable-ml-book/
https://www.oreilly.com/ideas/ideas-oninterpreting-machine-learning
https://pair-code.github.io/what-if-tool/
https://github.com/marcotcr/lime
https://github.com/microsoft/interpret
https://github.com/slundberg/shap